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Appendix C 
Resource for Secondary School Teachers: 
Circumcenter, Orthocenter, and Centroid 

The purpose of this appendix is to give a demonstration—albeit on a small 
scale—of how the usual tedium and pitfalls of the axiomatic development of 
Euclidean geometry might be avoided. It deals with very standard materials: why 
the perpendicular bisectors (resp., altitudes and medians) of a triangle must meet 
at a point, the circumcenter (resp., orthocenter and centroid) of the triangle. The 
exposition starts at the lowest level—the axioms—and ends with a proof of the 
concurrence (i.e., meeting at a point) of the medians. It also includes a collection 
of exercises on proofs as an indication of how and when such exercises might be 
given. The major theorems to be proved (Theorems 1 and 11–14) are all interest
ing and are likely regarded as surprising to most students. These theorems would 
therefore do well to hold students’ attention and convince students of the value of 
mathematical proofs. 

The goal of this appendix is to prove the concurrence of the medians. If one 
turns this proof “inside out,” so to speak, one will get the proof of the concur
rence of the altitudes. The proof of the latter theorem is also included as is a 
demonstration of the concurrence of the perpendicular bisectors since that is also 
needed. The fact that the concurrence of the angle bisectors (the incenter) is left 
out is therefore entirely accidental. This appendix makes no pretense at complete
ness because its only purpose is to demonstrate a particular approach to geometric 
exposition, but if it did, then certainly the four centers would have been discussed 
together. 

We specifically call attention to the following features: 

1. The appearance of the exercises on proofs is intentionally gauged to approx
imate at what point of the axiomatic development those exercises should be 
given to students in a classroom situation. The first of such exercises asks only 
for a straightforward imitation of a proof that has just been presented (Lemma 
(2B)). The next one asks only for the reasons for some steps in the proof of 
Lemma 6, and by then students have already been exposed to several nontrivial 
proofs. The first exercise that asks for a genuine proof occurs after Lemma 7. 
In other words, students are given ample time to absorb the idea of a proof 
by studying several good examples before they are asked to construct one 
themselves. 

A conscientious effort was also made to ensure that the exercises all have 
some geometric content so that any success with them would require some 
geometric understanding instead of just facility with formal reasoning. 

2. Certain facts are explicitly assumed without proof before some of the proofs 
(local axiomatics). Students should be informed that they too can make use of 
these unproven assertions. 
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3. None of the results presented is trivial to a beginner (except Lemma 4). It is 
hoped that, altogether, these results will convince the students of the benefit of 
learning about proofs; namely, to understand why some interesting things are 
true and be able, in turn, to present arguments to convince other people. 
In fact, most students probably do not believe any of the major theorems 
(Theorems 1 and 11–14) before being exposed to their proofs. 

4. The concurrence of the altitudes and medians (Theorems 11 and 14) is usually 
not presented in standard textbooks except by use of coordinate geometry or 
the concept of similarity. Thus those theorems tend not to appear in a typical 
geometry curriculum. However, the easy access to them as demonstrated by 
this appendix should be a convincing argument that, with a little effort, it is 
possible to present students with interesting results very early in a geometry 
course. 

5. The two-column proofs given in the following pages most likely do not 
conform to the rigid requirements imposed on the students in some classrooms 
(cf. Schoenfeld 1988, 145–66). However, for exposition, they are perfectly 
acceptable by any mathematical standards. It is hoped that their informal 
character would help restore the main focus of a proof, which is the correctness 
of the mathematical reasoning instead of a rigidly correct exposition. 

6. The proof of Theorem 12 is given twice: once in the two-column format and 
the second time in the narrative (paragraph) format. In the classroom such 
“double-proofs” should probably be done for a week or two to lead students 
away from the two-column format. The proof of Theorem 13 is given only in 
the narrative format. 

Axioms 

We shall essentially assume the School Mathematics Study Group (SMSG) 
axioms, which are paraphrased below rather than quoted verbatim for easy refer
ence; the relevant definitions are usually omitted (see Cederberg 1989, 210–11). 
Only those axioms pertaining to plane Euclidean geometry are given. Moreover, a 
school geometry course has no time for a minimum set of axioms. The last three 
axioms have therefore been added to speed up the logical development. 

1. Two points A and B determine a unique line, to be denoted by AB. 

2. (The Distance Axiom). To every pair of distinct points there corresponds 
a unique positive number, called their distance. This distance satisfies the 
requirement of the next axiom. 

3. (The Ruler Axiom). Every line can be put in one-one correspondence with the 
real numbers so that if P and Q are two points on the line, then the absolute 
value of the difference of the corresponding real numbers is the distance 
between them. 

4. (The Ruler Placement Axiom). Given two points P and Q on a line, the 
correspondence with real numbers in the preceding axiom can be chosen so 
that P corresponds to zero and Q corresponds to a positive number. 
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5. There are at least three noncollinear points. 

6. (The Plane Separation Axiom). Given a line l. Then the points not on l form 
two convex sets, and any line segment AB  joining a point A in one set 
and a point B in the other must intersect l. The convex sets are called the 
half-planes determined by l. 

7. (The Angle Measurement Axiom). To every ∠ABC there corresponds a real

number between 0 and 180, to be denoted by m∠ABC, called the measure

of the angle.


8. (The Angle Construction Axiom). Given a line AB and a half-plane H

determined by AB, then for every number r between 0 and 180, there is

exactly one ray 

→ 
in H so that m∠PAB = r.
AP 

9. (The Angle Addition Axiom). If D is a point in the interior of ∠BAC, then

m∠BAC = m∠BAD + m∠DAC.


10. (The Angle Supplement Axiom). If two angles form a linear pair, then their 
measures add up to 180. 

11. SAS Axiom for congruence of triangles. 

12. (The Parallel Axiom). Through a given external point, there is at most one 
line parallel to a given line. 

13. (The Area Axiom). To every polygonal region, there corresponds a unique 
positive number, called its area, with the following properties: (i) congruent 
triangles have the same area; (ii) area is additive on disjoint unions; and 
(iii) the area of a rectangle is the product of the lengths of its sides. 

14. SSS Axiom for congruence of triangles. 

15. ASA Axiom for congruence of triangles. 

16. (The AA Axiom for Similarity). Two triangles with two pairs of angles equal 
are similar. 

Perpendicularity 

In the following exposition, we shall denote both the line segment from point A to 
point B and the distance from A to B simply by AB . In other words, AB will 
denote also the length of the line segment AB. Similarly, we shall shorten the 
notation for the measure of an angle m∠ABC to just ∠ABC. Thus AB < CD 
means CD is longer than AB, and ∠ABC = 45 means angle ABC has 45 degrees. 

Recall that ∠DCB is a right angle (see figure 1), and DC is perpendicular 
to CB, if for a point A collinear with C and B and on the other side of C from B, 
∠DCA = ∠DCB. If ∠DCB is a right angle, then its measure is 90 because by 
the Angle Supplement Axiom ∠DCA + ∠DCB = 180 so that ∠DCB + ∠DCB = 
180, and we obtain ∠DCB = 90. 

Similarly, ∠DCA = 90. Conversely, if A, C, B are collinear and ∠DCB = 90, 
the same argument shows ∠DCA = 180 − ∠DCB = 90, and ∠DCB = ∠DCA so 
that ∠DCB is a right angle. Thus we can assert that two lines l

1
, l

2
 are perpen

dicular if one of the angles they form is 90. 
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A B 
C 

Figure 1 

Recall also that a point C on a segment AB is the midpoint of AB if AC = 
CB . (Recall the convention: AB denotes the line containing A and B, and AB 
denotes the line segment joining A to B.) The straight line passing through the 
midpoint of a segment and perpendicular to it is called the perpendicular bisector 
of the segment. Note that every segment has a perpendicular bisector. Indeed, 
given AB , the Ruler Axiom guarantees that there is a midpoint C of AB , and the 
Angle Construction Axiom guarantees that there is an ∠DCB = 90. Then by the 
preceding discussion, DC ⊥ AB, and DC is the perpendicular bisector. 

We shall need the fact that the perpendicular bisector of a segment is unique; 
that is, if DC and D′C′ are perpendicular bisectors of AB , then DC = D′C′ . This 
is so intuitively obvious that we shall not spend time to prove it. 

[For those interested in a proof, however, one uses the Distance Axiom and the 
Ruler Axiom to show that the midpoint of a segment must be unique, and 
then one uses the Angle Construction Axiom to show that the line passing 
through the midpoint and perpendicular to the segment is also unique.] 

Three lines are concurrent if they meet at a point. The following gives a surpris
ing property about perpendicular bisectors: 

THEOREM 1. The perpendicular bisectors of the three sides of a triangle are concurrent. 
(The point of concurrency is called the circumcenter of the triangle.) 

Let A′B′C′ be the midpoints of BC , AC , and AB , respectively (see figure 2). 
A naive approach would try to prove directly that all three perpendicular bisectors 
meet at a point O. This is too clumsy and also unnecessary. A better way is the 
following: Take two of the perpendicular bisectors, say, those at A′ and B′, and let 
them meet at a point O. Then we show that O must lie on the perpendicular 
bisector of AB . Theorem 1 would be proved. 

A 

C' B'

O 

B A' C 

Figure 2 



291 

Appendix C 
Resource 

for Secondary 
School Teachers 

One would appreciate this approach to the proof of Theorem 1 more if the 
perpendicular bisector of a segment is better understood. To this end we first 
prove: 

LEMMA 2. A point D is on the perpendicular bisector of a segment AB if and only 
if DA = DB . 

PROOF. First, we explain the “if and only if ” terminology. It is a shorthand to 
indicate that two assertions must be proved: 

(i)	 If the statement preceding this phrase is true, then the statement following 
this phrase is also true. 

(ii)	 If the statement following this phrase is true, then the statement preceding 
this phrase is also true. 

For the case at hand, this means we have to prove two things (see figure 3): 

D 

A BC 
Figure 3 

LEMMA (2A). If D is on the perpendicular bisector of AB, then DA = DB. 

LEMMA (2B). If DA = DB , then D is on the perpendicular bisector of AB. 

PROOF OF (2A): Let CD be the perpendicular bisector of AB. 

1. AC = CB, and ∠DCA = ∠DCB = 90. 1. Hypothesis. 

2. CD = CD. 	2. Obvious. 

3. ADC ≅ BDC.	 3. SAS. 

4. 	DA = DB .  4.  Corresponding sides of congruent 
triangles. Q.E.D. 

PROOF OF (2B): Given that DA = DB , we have to show that the perpendicular 
bisector of AB passes through D. Instead of doing so directly, we do something 
rather clever: we are going to construct the angle bisector CD of ∠ADB. This 
means ∠ADC =∠CDB. Of course, we must first prove that there is such a line 
CD with the requisite property. Then we shall prove CD ⊥ AB and AC = CB so 
that CD is the perpendicular bisector of AB. 

Recall that the Plane Separation Axiom makes it possible to define the interior 
of ∠ADB as the intersection of the half-plane determined by DA which contains 
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B and the half-plane determined by DB which contains A. Now the following 
assertion is obvious pictorially: 

ASSERTION A. If E is a point such that ∠ADE < ∠ADB, then E is in the interior 
of ∠ADB. Furthermore, the line DE intersects AB. 

For those who are truly curious, let it be mentioned that the first part of 
Assertion A can be proved by using the Angle Addition Axiom and the second 
part by repeated applications of the Plane Separation Axiom (see figure 4). 

D 

A B 
C 

E 

Figure 4 

1. If the measure of ∠ADB is x, there 
is a point E in the interior of ∠ADB 
so that ∠ADE = 2 

x . 

2. If DE meets AB  at C, 
∠ADC + ∠CDB = ∠ADB = x. 

3. ∠CDB = x − ∠ADC = x − 2 
x = 2 

x . 

4. ∠ADC = ∠CDB. 

5. DA = DB. 

6. CD = CD. 

7. ACD ≅ 

8. AC = CB 

BCD.


and ∠DCA = ∠DCB.


9. CD is the perpendicular bisector 
of AB. 

1. Angle Construction Axiom 
and Assertion A. 

2. Angle Addition Axiom 
and Assertion A. 

3. By 1 and 2. 

4. By 1 and 3. 

5. Hypothesis. 

6. Obvious. 

7. SAS. 

8. Corresponding angles and sides 
of congruent triangles. 

9. By 8 and the definition of a 
perpendicular bisector. Q.E.D. 
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Exercise 1. Using the preceding proof as a model, write out a complete proof of 
the fact that if ABC is isosceles with AB = AC , then the angle bisector of ∠A is 
also the perpendicular bisector of BC . 

From the point of view of Lemma 2, our approach to the proof of Theorem 1 is 
now more transparent. As mentioned previously, this approach is to let the perpen
dicular bisectors A′O and B′O of BC  and AC, respectively, meet at a point O. 
Then we shall prove that O lies on the perpendicular bisector of AB  (see figure 5). 

A 

B'C' O 

B A' C 

Figure 5 

PROOF OF THEOREM 1. Join OB, OC, and OA. 

1. OB = OC. 1. Lemma (2A) and the fact that OA′ is 
the perpendicular bisector of BC. 

2. OC = OA.  2.  Lemma (2A) and the fact that OB′ 
is the perpendicular bisector of AC. 

3. OB = OA. 3. From 1 and 2. 

4. O lies on the perpendicular 4. Lemma (2B). Q.E.D. 
bisector of AB. 

Circumcenter of a Triangle 

COROLLARY TO THEOREM 1. The circumcenter of a triangle is equidistant from all 
three vertices. 

The corollary is obvious if we look at steps 1–3 of the preceding proof. Note 
that, as figure 6 suggests, the circumcenter can be in the exterior of the triangle. 

A 
C' 

B' 

B 

C 

O 

A' 

Figure 6 
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Several remarks about the proof of Theorem 1 are in order. First of all, this 
proof suggests a general method of proving the concurrency of three lines: let two 
of the three meet at a point O, and then show that O must lie on the third line. 
Technically, this is easier than directly proving that all three lines meet at a point. 
This method is a kind of indirect proof and is useful in many situations; for 
example, in proving that the three angle bisectors of a triangle are concurrent. 
In other words, if we think of proving a theorem as fighting a battle against an 
enemy, then it makes sense that sometimes we can defeat the enemy without 
resorting to a frontal attack. 

A second remark has to do with the tacit assumption discussed previously; 
namely, that the perpendicular bisectors OA′ and OB′ of BC and AC, respec
tively, do meet at a point O. This is obvious from figure 6, and we usually do 
not bother to prove such obvious statements, being fully confident that—if 
challenged—we can prove them. For the sake of demonstration, however, we will 
supply a proof this time after we have proved a few properties of parallel lines. 
Thus, we shall prove: 

ASSERTION B. Perpendicular bisectors from two sides of a triangle must intersect. 

Note that there is no circular reasoning here: Assertion B will not be used to 
prove any of the theorems involving parallel lines. Indeed, we shall not have to 
face Assertion B again in this appendix. 

A third remark concerns the name circumcenter. A circle with center O and 
radius r is by definition the collection of all points whose distance from O is r. 
The corollary to Theorem 1 may then be rephrased as: the circle with center O 
and radius OA passes through all three vertices. This circle is called the circum
circle of ABC, which then gives rise to the name “circumcenter.” (Circum means 
“around.”) Incidentally, Theorem 1 proves that any triangle determines a circle 
that passes through all three vertices. 

Next, we turn attention to the altitudes of a triangle; that is, the perpendiculars 
from the vertices to the opposite sides (see figure 7). We want to show that they 
too are concurrent. This demonstration needs some preparation. First of all, we 
have to show that altitudes exist; that is, through each vertex there is a line that is 
perpendicular to the opposite side. More generally, we shall prove: 

LEMMA 3. Given a point P and a line l not containing P, there is a line PQ which 
is perpendicular to l. 

P 

l 

R O A S 

Q 

Figure 7 
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PROOF. Let l = RS. Recall that l contains an infinite number of points (the 
Ruler Axiom) and that the Plane Separation Axiom allows us to talk about the 
two sides of l. 

1. Join P to an arbitrary point A on l. 1. Two points determine a line. 

2. If x is the measure of ∠PAR, let Q 2. The Angle Construction Axiom. 
be a point on the side of l not 
containing P so that ∠PAQ = x. 

3. We may let Q be the point on AQ 3. The Distance Axiom. 
so that Q, P are on opposite sides 
of l and AQ = AP. 

4. PQ meets l at some point O. 4. The Plane Separation Axiom. 

5. ∠PAO = ∠QAO. 5. From 1 and 2. 

6. OA = OA . 6. Obvious. 

7. ▲PAO ≅ ▲QAO. 7. SAS. 

8. ∠AOP = ∠AOQ. 8. Corresponding angles of congruent 
triangles. 

9. PQ ⊥ l. 9. By definition of perpendicularity. 
Q.E.D. 

Vertical Angles 

Before we turn to parallel lines, we do some spadework. The teacher introduces 
the definition of vertical angles (omitted here). 

LEMMA 4. Vertical angles are equal. 

PROOF. Let AB, CD meet at O. We will show ∠AOD = ∠BOC (see figure 8). 

1. ∠AOD + ∠DOB = 180 and 1. The Angle Supplement Axiom. 
∠DOB + ∠BOC = 180. 

2. ∠AOD + ∠DOB = ∠DOB + ∠BOC. 2. By 1. 

3. ∠AOD = ∠BOC. 3. From 2 and the cancellation law 
of addition. Q.E.D. 

A C 

O 

D B 

Figure 8 
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The teacher introduces the definitions of exterior angle and remote interior 
angles of a triangle (omitted here). To prove the next proposition, we shall 
assume a geometrically obvious fact. In figure 9 if M is any point on AC, we 
shall assume as known: 

ASSERTION C. If we extend BM along M to a point E, then E is always in the 
interior of ∠ACD. 

This can be proved with repeated applications of the Plane Separation Axiom, 
but the argument is not inspiring. 

A 

C

M 

E 

B D 

Figure 9 

PROPOSITION 5. An exterior angle of a triangle is greater than either remote 
interior angle. 

PROOF. Let us show ∠ACD > ∠BAC (see figure 10). To show ∠ACD > ∠ABC, 
we observe that the same proof would show ∠BCG > ∠ABC and then use 
Lemma 4 to get ∠BCG = ∠ACD. Putting the two facts together, we get 
∠ACD > ∠ABC. 

Join B to the midpoint M of AC and extend BM to a point E such that 
BM = ME (the Ruler Axiom). Join CE. 

A 

C

M

G 

E 

B 
D 

Figure 10 
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1. ∠AMB = ∠EMC. 1. Lemma 4. 

2. BM = ME . 2. By construction. 

3. AM = MC. 3. M is the midpoint of AC . 

4. AMB ≅ CME. 4. SAS. 

5. ∠BAM = ∠MCE. 5. Corresponding angles of congruent 
triangles. 

6. ∠MCE < ∠ACD. 6. By the Angle Addition Axiom and 
Assertion C. 

7. ∠BAC < ∠ACD. 7. By 5 and 6. Q.E.D. 

Parallel Lines 

We now come to some basic facts about parallel lines. Given two lines l
1
 and 

l
2
, one can introduce the definition of alternate interior angles and corresponding 

angles of l
1
 and l

2
 with respect to a transversal (omitted here). We shall need: 

LEMMA 6. If two lines make equal alternate interior angles with a transversal, they 
are parallel. 

PROOF. Let the transversal be BE. Designate the two equal alternate interior 
angles as ∠α and ∠β (see figure 11). We assume that AC is notto DF and 
deduce a contradiction. (This is an example of proof by contradiction.) 

B 
A α C 

K L 

β 
D 

E F 

Figure 11 

1. AC meets DF either at a point K 1. By the fact that AC is notto DF 
to the left of BE or at L to the right and by the Plane Separation Axiom. 
of BE. 

2. If AC meets DF at K, then ∠β >∠α, 2. 
contradicting ∠α = ∠β. 

Q.E.D.

also contradicting ∠α = ∠β.


3. If AC meets DF at L, then ∠α > ∠ β, 3.
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Exercise 2. Supply the reasons for steps 2 and 3. 
[Answers: Proposition 5 is the reason for both.] 

Note: The textbook and teacher must make sure that students are eventually 
given the answers to problems of this nature; it is important to bring closure to a 
mathematical discussion. 

This proposition complements the parallel axiom in the following sense. 
Notation is given as in the preceding proof: suppose that DF and B are given and 
we want to construct a line through B and  DF. By the Angle Construction 
Axiom, with ∠β as given, we can construct ∠α with vertex at the given B on the 
other side of ∠β but with the same measure. Then by Lemma 6, AC is a line 
passing through B which is  DF. Therefore: 

COROLLARY TO LEMMA 6. Through a point not on a line l, there is one and only 
one line parallel to l. 

Lemma 7 is the converse of Lemma 6. 

LEMMA 7. Alternate interior angles of parallel lines with respect to a transversal are 
equal. 

PROOF. The notation is as before, suppose AC  DF. We shall prove ∠α = ∠β 
(see figure 12). 

A' B
C 

α 

β 
D E F 

Figure 12 

1. At B, construct ∠A′BE to the left 1. Angle Construction Axiom. 
of BE so that ∠A′BE = ∠β. 

2. A′B  DF. 2. 

3. Since A′B passes through B, 3. 
A′B = AB. 

4. ∠α = ∠A′BE = ∠β. 4. By 3. Q.E.D. 

Exercise 3. Supply the reasons for steps 2 and 3. 
[Answers: Step 2. Lemma 6. Step 3. The Parallel Axiom.] 

Exercise 4. Prove that corresponding angles of parallel lines with respect to a 
transversal are equal. 
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Parallelograms 

The teacher introduces the definition of a quadrilateral (omitted here). A 
parallelogram is a quadrilateral with parallel opposite sides. We shall need two 
properties of parallelograms that are pictorially plausible when a parallelogram is 
drawn carefully. 

LEMMA 8. A quadrilateral is a parallelogram if and only if it has a pair of sides 
which are parallel and equal. 

LEMMA 9. A quadrilateral is a parallelogram if and only if its opposite sides are 
equal. 

PROOF OF LEMMA 8. First we prove that if quadrilateral ABCD has a pair 
of sides which are parallel and equal, then it is a parallelogram. In figure 13 we 
assume AB = CD and AB  CD . Then we have to prove AD  BC. 

A B 

D C 

Figure 13 

1. Join BD. BD = BD. 1. Two points determine a line. 

2. ∠ABD = ∠BDC. 2. Lemma 7. 

3. ABD ≅ CDB. 3. SAS. 

4. ∠ADB = ∠DBC. 4. Corresponding angles of congruent 
triangles. 

5. AD  BC. 5. Lemma 6. Q.E.D. 

Next we prove that a parallelogram has a pair of sides which are parallel and 
equal. Since AB  DC by definition, it suffices to prove that AB = DC . Let 
notation be as in the preceding proof. 

1. ∠ABD = ∠BDC and 1. Lemma 7. 
∠ADB = ∠DBC. 

2. BD = BD. 2. Obvious. 

3. ABD ≅ CDB. 3. ASA. 

4. AB = DC. 4. Corresponding sides of congruent 
triangles. Q.E.D. 
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Exercise 5. Prove Lemma 9 (it is similar to the proof of Lemma 8). 

Exercise 6. Prove that a quadrilateral ABCD is a parallelogram if and only if 
the diagonals AC  and BD  bisect each other; that is, if they intersect at E, then 
AE = EC  and BE = ED  (see figure 14). 

A 

C 

E B 

D 

Figure 14 

The following lemma is an immediate consequence of Lemma 6. Convince 
yourself of this and be sure to draw pictures to see what it says. 

LEMMA 10. Suppose two lines l
1
 and l

2
 are parallel. (i) If l is a line perpendicular 

to l
1
, then l is also perpendicular to l

2
. (ii) If another two lines L

1
 and L

2
 satisfy 

L
1 
⊥ l

1
 and L

2 
⊥ l

2
, then L

 1
 L

2
. 

ABC 
be given and let lines l

1
 and l

2
 be the perpendicular bisectors of BC  and AC , 

respectively, (see figure 15). Let lines L
1
 and L

 2
 be lines containing BC  and AC , 

respectively. If Assertion B is false, then l
1
 l

2
. By Lemma 10 (ii), L

 1
 L

2
. But 

we know L
 1
 meets L

 2
 at C, a contradiction. Thus l

1
 must meet l

2
 after all. 

We are in a position to prove one of our main results. 

We can now prove Assertion B stated after the proof of Theorem 1. Let 

A 

l2 

L1 
CB 

l1 L2 

Figure 15 
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The Orthocenter 

THEOREM 11. The three altitudes of a triangle are concurrent. (This point is 
called the orthocenter of the triangle.) 

PROOF. Let ABC be given and let its altitudes be AD, BE, and CF. The idea 
of the proof is to turn AD, BE, CF into perpendicular bisectors of a bigger 
triangle and use Theorem 1. The idea itself is sophisticated and is attributed 
to the great mathematician C. F. Gauss. Technically, however, it is quite simple 
to execute. It illustrates a general phenomenon in mathematics: sometimes a 
seemingly difficult problem becomes simple when it is put into the proper 
context (see figure 16). 

D 

E

F 

A'

A B' 
C' 

C 
B 

Figure 16 

1. Through A, there is a line 1. Corollary to Lemma 6. 
C′B′ BC. 

2. Similarly, let C′A′ and B′A′ be lines 2. Same reason. 
through B and C, respectively, such 
that C′A′  AC and B′A′  AB. 

3. ABCB′ is a parallelogram. 3. From 1 and 2. 

4. AB′ BC = . 4. Lemma 9. 

5. ACBC′ is likewise a parallelogram 5. See 3 and 4. 
and ′ =C A  BC  . 

6. ′C A  = AB′. 6. From 4 and 5. 

7. AD ⊥ BC. 7. Hypothesis. 

8. AD ⊥ C′B′. 8. Lemma 10(i). 

9. AD is the perpendicular bisector 9. From 6 and 8. 
of C B′ ′. 

10. Similarly, BE and CF are perpen 10. See 3 through 9. 
dicular bisectors of C A′ ′ and 
A B′ ′, respectively. 

11. AD, BE, and CF are concurrent. 11. Apply Theorem 1 to A′B′C′. 
Q.E.D. 
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The Medians and Centroid of a Triangle 

The line joining a vertex of a triangle to the midpoint of the opposite side is 
called a median of the triangle. 

Exercise 7. In the notation of the proof of Theorem 11, prove that AA′, BB′, 
and CC′ are the medians of ABC as well. 

Finally, we turn to the proof of the concurrence of the medians. The proof will 
be seen to have many points of contact with the proof of Theorem 11 shown 
previously. Instead of turning “outward” to a bigger triangle, however, the proof 
of the concurrence of the medians turns “inward” and looks at the triangle 
obtained by joining the midpoints of the three sides. To this end, the following 
theorem is fundamental: 

THEOREM 12. The line segment joining the midpoints of two sides of a triangle is 
parallel to the third side and is equal to half of the third side. 

PROOF. Thus if AE = EB and AF = FC , then EF  BC and EF = 
2
1 

BC . 

To motivate the proof, note that all the axioms and the theorems presented 
so far deal with the equality of two objects (angles, segments, and so forth), 
not about half of something else. So it makes sense to try to reformulate 

1EF = BC as a statement about the equality of two equal segments (see 
2 

figure 17). What then is simpler than doubling EF ? Students will learn that the 
construction of so-called auxiliary lines, such as FP  and PC  in the following 
proof, is a fact of life in Euclidean geometry. 

A 

F
E P 

CB 
Figure 17 

1. Extend 	EF  along F to P so that 1. The Ruler Axiom and the fact that 
EF  = FP and join PC. two points determine a line. 

2.	 AF = FC. 2. Hypothesis. 

3. ∠AFE = ∠PFC.	 3. Lemma 4. 

4. AFE ≅ CFP.	 4. 

5. ∠AEF = ∠FPC. 5. By 4 and corresponding angles of 
congruent triangles are equal. 

6. EB  PC.	 6. Lemma 6. 
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7.	 AE = PC. 7. By 4 and corresponding sides of 
congruent triangles are equal. 

8. AE = EB.	 8. Hypothesis. 

9. EB = PC .	 9. By 7 and 8. 

10.  EBCP is a parallelogram. 10. 

11.	 EF  BC. 11. By 10 and the definition of a 
parallelogram. 

12. EP = BC .	 12. 

13. EP = 2EF .	 13. By 1. 

14. EF = 2
1 BC .	 14. By 12 and 13. Q.E.D. 

Exercise 8. Supply the reasons for steps 4, 10, and 12. 
[Answers: Step 4. By 1 through 3 and SAS. Step 10. By 6, 9, and Lemma 8. 

Step 12. By 10 and Lemma 9.] 

PROOF OF THEOREM 12 IN NARRATIVE FORM. Extend EF to a point P so that 
EF = FP . Join PC. We are going to prove that AEF ≅ CPF. This proof is 
possible because the vertical angles ∠AFE and ∠CFP are equal, AF = FC by 
hypothesis and EF = FP  by construction. So SAS gives the desired congruence. 
It follows that ∠AEF = ∠CPF and therefore that AB  PC (Lemma 6) and 
AE = PC. Because AE = EB , EB  and PC  are both parallel and equal. Hence 
EBCP is a parallelogram (Lemma 8). In particular, EP BC and, by Lemma 10, 
EP = BC. Hence BC = EF + FP = 2EF . Q.E.D. 

Exercise 9. Prove that two lines that are each parallel to a third line are parallel 
to each other. 

In the next four exercises, do not use Axiom 16 on similarity (p. 289) in your 
proofs. 

Exercise 10. Let E be the midpoint of AB  in ABC. Then the line passing 
through E which is parallel to BC bisects AC. 

Exercise 11. Let ABCD be any quadrilateral, and let A′, B′, C′, and D′ be 
the midpoints of AB, BC, CD, and DA , respectively. Then A′B′C′D′ is a 
parallelogram. 

Exercise 12. Given ABC. Let L, M be points on AB and AC, respectively, 
so that AL = 1 AB  and 1 AB and AM = 1 AC . Prove that LMBC and 
LM = 1 BC .

4 4 4 

4 

Exercise 13. Given ABC. Let L, M be points on AB  and AC , respectively, 
so that AL = 3

1 AB and AM = 
3
1 AC . Prove that LMBC and LM = 3

1 BC . 
(Hint: Begin by imitating the proof of Theorem 12.) 
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Exercise 14. (For those who know mathematical induction.) Let n be a positive 
integer. Given ABC. Let L, M be points on AB and AC, respectively, so that 
AL = 1 AB and AM = 1 AC . Prove that LMBC and LM = 1 BC . 

n n n 

For the proof of the next theorem, we shall assume the following three facts: 

ASSERTION D. Any two medians of a triangle meet in the interior of the triangle. 

ASSERTION E. Two lines that are each parallel to a third are parallel to each other. 

ASSERTION F. The diagonals of a parallelogram bisect each other. 

For Assertion D one first has to define the interior of a triangle by using the 
Plane Separation Axiom. The proof then uses this axiom repeatedly, a tedious 
process. Assertion E is Exercise 9 shown previously, and Assertion F is Exercise 6 
on page 300. 

THEOREM 13. Let BE be a median of ABC. Then any other median must meet 
BE at the point G so that BG = 2GE . 

PROOF. Let CF be another median and let CF meet BE at a point to be denoted 
also by G for simplicity. We will prove that BG = 2GE , which would then finish 
the proof of the theorem (see figure 18). 

A 

E 

CB 

L 

F 

G 
M 

Figure 18 

Join FE and join the midpoint L of BG  to the midpoint M of CG. Applying 
Theorem 12 to ABC, we get BC = 2 FE and FEBC. Similarly, applying the 
same theorem to GBC yields BC = 2 LM and LMBC. Hence FE  and LM 
are equal and parallel (by Assertion E), and FEML is a parallelogram (Lemma 8). 
By Assertion F, LG = GE . L being the midpoint of BG implies BL = LG = GE 
so that BG = 2GE . Q.E.D. 

Exercise 15. Let D, E, F be the midpoints of BC , AC, and AB , respectively, in 
ABC. Prove that AFE, DFE, FBD, and EDC are all congruent. 

DFE in Exercise 15 is called the medial triangle of ABC. 
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It follows immediately from Theorem 13 that both of the other two medians 
of ABC must intersect BE at the point G. Hence we have: 

THEOREM 14. The three medians of a triangle are concurrent, and the point of 
concurrency is two-thirds of the length of each median from the vertex. (This is the 
centroid of the triangle.) 

Exercise 16. Show that the centroid of a triangle is also the centroid of its 
medial triangle. 

One may conjecture in view of Theorem 14 that if we trisect each side of a 
triangle, then the lines joining a vertex to an appropriate point of trisection on 
the opposite side may also be concurrent. One accurately drawn picture (see 
figure 19) is enough to lay such wishful thinking to rest. Such a picture then 
provides a counterexample to this conjecture. 

A 

B C 

Figure 19 

Part of the charm of Euclidean geometry is that most conjectures can be made 
plausible or refuted by a judicious picture. Compared with other subjects, such as 
algebra or calculus, this way of confronting a conjecture in geometry is by far the 
most pleasant. 
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